Informasi

16.5: Suksesi - Biologi

16.5: Suksesi - Biologi


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Proses serupa untuk lebih dari dua spesies menghasilkan suksesi spesies yang mengambil alih, satu demi satu, dalam proses ekologis yang dikenal sebagai "suksesi".

Dalam sistem alami banyak spesies bersaing, dengan pertukaran antara nilai (R^{ast}) dan tingkat pertumbuhannya, seperti pada Gambar (PageIndex{1}). Berikut ini adalah program untuk mensimulasikan persamaan diferensial untuk lima spesies yang bersaing untuk sumber daya yang sama dan menghasilkan kurva Gambar (PageIndex{2}). Dengan hanya dua spesies, program yang sama ini dapat menghasilkan kurva Gambar 16.3.3.

# SIMULASI SATU TAHUN# Rutin ini mensimulasikan persamaan diferensial kompetisi melalui satu kali# unit, seperti satu tahun, mengambil langkah waktu yang sangat kecil di sepanjang jalan.# Akurasi harus diperiksa dengan mengurangi ukuran langkah waktu kecil sampai# hasilnya tidak berubah secara signifikan.# Rutin ini mengimplementasikan Metode Euler untuk menyelesaikan persamaan diferensial#, yang selalu berhasil jika langkah waktunya cukup kecil.## ENTRY: 'N1' hingga 'N5' adalah populasi awal untuk spesies 1-5.# 'm1' hingga 'm5' menentukan sensitivitas spesies yang sesuai# terhadap jumlah sumber daya yang tersedia.# 'u1' hingga 'u5' menentukan sumber daya yang terikat di setiap spesies.# 'R1star' hingga ' R5star' adalah level sumber daya minimum.# 'Rmax' adalah jumlah sumber daya terbesar yang mungkin.# 'dt' adalah durasi setiap langkah waktu kecil yang harus diambil sepanjang# tahun atau unit waktu lainnya.## EXIT: 'N1 ' hingga 'N5' adalah perkiraan populasi spesies 1-5 pada# akhir satuan waktu.# 'R' adalah perkiraan tingkat sumber daya pada titik e dan langkah waktu.
Rmax=R=7;R1star=1.0; R2bintang=2.0; R3bintang=3,0; R4bintang=4.0; R5star=5,0;N1=0,000001; N2=0,000010; N3=0,000100; N4=0,001000; N5=0,010000;m1=0,171468; m2=0,308642; m3=0.555556; m4=1.000.000; m5=1.800000;u1=0.001000; u2=0,001000; u3=0,001000; u4=0,001000; u5=0.001000;# SIMULASI SATU TAHUNSimulateOneYear = function(dt){ for(v in 1:(1/dt)) # Maju sedikit waktu.{ R=Rmax-u1*N1-u2*N2-u3*N3- # Hitung sisa sumber daya.u4*N4-u5*N5;dN1=m1*(R-R1star)*N1*dt; # Perkirakan perubahan thedN2=m2*(R-R2star)*N2*dt; # populasi tiap spesies.dN3=m3*(R-R3star)*N3*dt;dN4=m4*(R-R4star)*N4*dt;dN5=m5*(R-R5star)*N5*dt;N1= N1+dN1; N2=N2+dN2; # Tambahkan perkiraan perubahan keN3=N3+dN3; N4=N4+dN4; N5=N5+dN5; } # setiap populasi dan repeat.assign("N1",N1, envir=.GlobalEnv); # Pada akhirnya, ekspor hasil dan returnassign("N2",N2, envir=.GlobalEnv);assign("N3",N3, envir=.GlobalEnv);assign("N4",N4, envir=.GlobalEnv) ;assign("N5",N5, envir=.GlobalEnv); }# SIMULASI SEMUA TAHUN untuk(t dalam 0:100) # Maju satu tahun.{ print(round(c(t,N1,N2,N3,N4,N5))); # Tampilkan hasil.SimulateOneYear(1/(365*24)); } # Mengulang.

Suatu lingkungan dapat berubah karena spesies yang hidup di dalamnya memiliki efek yang dapat “memberi umpan balik” dan mengubah lingkungan itu sendiri. Dalam hal ini, umpan baliknya adalah perubahan tingkat sumber daya, di mana setiap spesies berturut-turut berubah dengan cara yang sesuai dengan keberadaannya sendiri. Tidak ada yang teleologis dalam hal ini; spesies apa pun yang mengubah lingkungan dengan cara yang tidak sesuai dengan keberadaan mereka sendiri tidak akan bertahan, dan karenanya tidak diamati. Ketika program dijalankan, ia menghasilkan sebuah file yang dikutip di bawah ini, yang digambarkan dalam Gambar (PageIndex{2}).

TN1N2N3N4N5
100000
2000013
30007391
4000451764
50011271894
60033291743
70097901392
::::::
6016493536000
6118913324000
6221573094000
6324452864000
6427512584000
6530702313000
6633972039000
6737251767000
::::::
9659991000
9759990000
9860000000
9960000000
10060000000

Pada awal Gambar (PageIndex{2}), dari waktu 0 hingga sekitar waktu 3, sumber daya berada pada tingkat maksimumnya, (R_{max}), dan kelimpahan semua spesies sangat rendah tingkat. Antara waktu 3 dan 5—Spesies 5, spesies dengan tingkat pertumbuhan tertinggi saat sumber daya melimpah—meningkat dengan cepat sementara sumber daya menurun. Namun menjelang akhir waktu itu, seri berikutnya, Spesies 4, mulai meningkat, menarik sumber daya ke bawah level yang memungkinkan Spesies 5 bertahan. Oleh karena itu, Spesies 5 menurun sementara Spesies 4 meningkat.

Proses ini berlanjut secara berurutan, dengan Spesies 3 menggantikan 4, 2 menggantikan 3, dan, akhirnya, Spesies 1 menggantikan 2. Sumber daya jatuh secara bertahap karena setiap spesies yang berurutan memperoleh dominasi. Akhirnya, ketika tidak ada lagi spesies yang lebih unggul, sistem mencapai apa yang disebut “kondisi klimaks” pada sekitar waktu 90, dengan sumber daya pada tingkat yang rendah.

Tidak ada yang sangat luar biasa tentang Spesies 1. Ini hanyalah (1) pesaing terbaik yang tinggal di wilayah tersebut, yang berarti pesaing yang lebih baik tidak dapat dengan mudah tiba di tempat kejadian, atau (2) pesaing terbaik yang belum diproduksi oleh proses evolusi. Dalam kedua kasus, itu dapat digantikan oleh yang lain—misalnya, oleh “spesies invasif” yang datang dengan cara yang luar biasa.

Tentu saja, suksesi dalam sistem alam yang kompleks mungkin tidak sejelas model sederhana kita. Berbagai sumber daya terlibat, spesies mungkin sangat dekat satu sama lain dalam parameter ekologisnya, dan peristiwa stokastik dapat campur tangan untuk menambah kebingungan.


Tonton videonya: VIDEO PEMBELAJARAN EVALUASI PROSES DAN HASIL BELAJAR BIOLOGI (November 2022).